Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Пермский национальный исследовательский политехнический университет»

Г.Ф. Масич

СЕТИ ПЕРЕДАЧИ ДАННЫХ

Утверждено Редакционно-издательским советом университета в качестве учебно-методического пособия

Издательство Пермского национального исследовательского политехнического университета 2014 Рецензенты:

канд. техн. наук *И.А. Хохлов* (Институт математики и механики УрО РАН, г. Екатеринбург); д-р экон. наук, профессор *Р.А. Файзрахманов* (Пермский национальный исследовательский политехнический университет)

Масич, Г.Ф.

M31

Сети передачи данных : учеб.-метод. пособие / Г.Ф. Масич. – Пермь : Изд-во Перм. нац. исслед. политехн. ун-та, 2014. – 192 с.

ISBN 978-5-398-01194-4

Приведены теоретические сведения об Ethernet- и IP-технологиях: принципах построения виртуальных локальных сетей (VLAN), протоколе построения связующего дерева (STP), классовой и бесклассовой моделях IP-адресации, протоколах маршрутизации RIP и BGP-4. Значительный объем практических занятий посвящен конфигурированию оборудования Cisco для создания требуемых свойств сети передачи данных.

Предназначено для студентов, обучающихся по направлению «Информатика и вычислительная техника», аспирантов, специалистов информационных технологий.

УДК 004.7

ISBN 978-5-398-01194-4

© ПНИПУ, 2014

ОГЛАВЛЕНИЕ

1. Протокол STP	5
1.1. Краткие теоретические сведения	5
1.1.1. Ключевые параметры (сущности) STP	7
1.1.2. Состояние портов моста и таймеры STP	10
1.1.3. Три этапа начальной сходимости STP	11
1.1.4. Формат BPDU-кадра	13
1.1.5. Алгоритм обработки конфигурационных	
ВРDU-сообщений	16
1.1.6. Пример работы STP	17
1.1.7. Развитие протокола STP	21
1.1.8. Настройка STP на коммутаторах Cisco	26
1.2. Лабораторная работа «Протокол STP»	28
1.2.1. STP-дерево «по умолчанию»	28
1.2.2. Изменение места положения корня	39
1.2.3. Фильтрация BPDU	42
1.2.4. Изменение места корневого порта	43
1.2.5. Изменение роли портов	44
1.2.6. Корректное восстановление исходной конфигурации	48
Задания для самостоятельной работы	48
Вопросы для самопроверки	49
Список литературы по главе 1	50
	51
2. VLAN, 802.1Q, EtherChannel L2, V1P	
2.1. Краткие теоретические сведения	
2.1.1. VLAN-сети	
2.1.2. Транки	
2.1.3. AFPERALUS HOPTOB EtherChannel	
2.1.4. Протокол V I Р	
2.1.5. Настроики на оборудовании Cisco	60
2.2. JIaoopatophas paoota «VLAN, 802.1Q, EtherChannel L2, VIP»	65
задания для самостоятельнои раооты	86
Вопросы для самопроверки	86
Список литературы по главе 2	8/
3. Протокол IP	88
3.1. Краткие теоретические сведения	88
3.1.1. IP-адрес	88
3.1.2. Основные понятия IP-маршрутизации	91

3.1.3. Две модели адресации и маршрутизации	94
3.1.3.1. Классовая модель адресации (Classful Model)	94
3.1.3.2. Классовая модель маршрутизации	97
3.1.3.3. Бесклассовая модель IP-адресации	99
3.1.3.4. Бесклассовая междоменная маршрутизация (CIDR)	100
3.2. Лабораторная работа «Распределение IP-адресов»	102
Задания для самостоятельной работы	107
3.3. Лабораторная работа «Движение пакетов в IP-сетях»	107
Задания для самостоятельной работы	114
Вопросы для самопроверки	114
Список литературы по главе 3	115
4. Протоколы маршрутизации RIP и BGP-4	116
4.1 Краткие теоретические сведения	116
411 Статическая маршиутизация	116
412 Протокол маршрутизации RIP	117
4 1 3 Протокол маршрутизации ВGР-4	122
4.1.4. Настройка оборудования Сіясо	
4.1.4.1. Настройка статического маршрута на роутерах Cisco.	133
4.1.4.2. Настройка протокола маршрутизации RIP	134
4.1.4.3. Настройка протокола маршрутизации BGP-4	137
4.2. Лабораторная работа «Протоколы маршрутизации	
RIP и BGP-4»	140
4.2.1. Статическая маршрутизация	145
4.2.2. RIP-маршрутизация	149
4.2.3. ВGР-маршрутизация	163
Задания для самостоятельной работы	190
Вопросы для самопроверки	191
Список литературы по главе 4	191

2. VLAN, 802.1Q, ETHERCHANNEL L2, VTP

2.1. Краткие теоретические сведения

2.1.1. VLAN-cemu

Одной из важных функций, реализуемых в технологии Ethernet, являются виртуальные локальные сети (VLAN), в которых для объединения серверов и рабочих станций в логические группы используются коммутаторы. Связь устройств, принадлежащих к одной VLAN-сети, возможна только с устройствами этой же сети. VLAN-сети создаются на коммутаторах на L2-уровне для разбиения сети на широковещательные домены, масштабирования сети и усиления безопасности сети. Кадры данных передаются в пределах одной VLAN-сети без изменений в своей структуре.

Каждая сеть VLAN создается в локальной базе данных используемого коммутатора. Если в коммутаторе отсутствуют сведения о какой-либо VLAN-сети, то он не может передавать трафик для этой сети VLAN через свои порты. При создании VLAN-сети ей присваивается номер. Существует диапазон для использования VLAN-номеров: от 1 до 4094. При создании VLAN-сети можно также назначить ей определенные атрибуты, такие как имя, тип и операционное состояние.

Виды VLAN-сетей:

а) базирующиеся на портах – статические VLAN-сети;

б) базирующиеся на основе МАС-адресов – динамические VLAN-сети.

Последовательность настройки VLAN на коммутаторе:

а) создать VLAN-сеть, задать имя и МТU;

б) привязать отобранные порты коммутатора к созданной VLAN-сети (статический способ) либо привязать MAC-адрес хоста к созданной VLAN-сети (динамический способ).

Рис. 2.8. Включение опции VTP Pruning

2.1.5. Настройки на оборудовании Cisco

Начальное состояние командной строки «привилегированный режим» EXEC Cisco IOS. Курсивом показаны переменные. Вертикальной чертой отделены различные варианты команд. Чтобы отменить команду, необходимо ввести ее повторно, но с *по* в начале.

Настройка VLAN на коммутаторах Cisco

Создание VLAN-сети:

– Вход в глобальный режим конфигурации

configure terminal

 Создание VLAN-сети и вход в режим конфигурации VLANсети

vlan «vlan-id»

– Настройка параметров VLAN-сети в режиме конфигурации VLAN-сети

[name vlan-nam] [state {suspend | active}] [mtu mtu-size]

Здесь name – описательное имя VLAN-сети длиной до 32 символов. Если имя не задано, принимается стандартное имя VLAN00XXX, где XXX – номер VLAN-сети;

– mtu – максимально возможная единица передачи данных (размер пакета в байтах), которая может использоваться в данной VLAN-сети. Стандартные значения находятся в диапазоне от 576 до 18 190. МТU-размер может быть увеличен до 1500 для Ethernetсети и превышает это значение для сетей Token Ring и FDDI. Стандартное значение – 1500;

– state – используется для определения состояния VLAN-сети активное (Active) или приостановленное (Suspend). В последнем случае работа всех портов приостановлена и передача ими трафика не разрешена. Стандартное значение – Active.

Назначение сетям VLAN портов:

- вход в глобальный режим конфигурации

configure terminal

– вход в режим конфигурирования интерфейса порта. Указать физический интерфейс, который надо сконфигурировать для VLAN

interface «interface-id»

 – сконфигурировать интерфейс порта в режим статического доступа

switchport mode access

– сопоставить порт с VLAN. Правильные идентификаторы VLAN от 1 до 4094; не начинайте ввод идентификатора с нуля

switchport access vlan «vlan-id»

- просмотреть настройки VLAN-режима на интерфейсе:

show running-config interface «interface-id»

– просмотреть настройки VLAN на коммутаторе: show vlan

Настройка транков на коммутаторах Cisco

Создание транка на порту:

– вход в глобальный режим конфигурации

```
configure terminal
```

- вход в режим конфигурирования интерфейса порта interface «interface-id»

– формируем транк на порту

switchport mode {dynamic {auto | desirable} | trunk}

Здесь dynamic auto установит интерфейс в состояние транка, если на соседнем интерфейсе установлен режим Trunk или Desirable. Включено по умолчанию;

• dynamic desirable установит интерфейс в состояние транка, если на соседнем интерфейсе установлен режим Trunk, Desirable или Auto;

• trunk установит интерфейс в перманентное состояние транка, даже если соседний интерфейс не транковый.

– меняем Native VLAN на VLAN, кроме 1

switchport trunk native vlan vlan id

– разрешаем или запрещаем трафику определенного VLAN идти по транку

```
switchport trunk allowed vlan {add | all | except |
remove} vlan-list
```

- просмотр параметров настроенных транков show interfaces trunk

Настройка EtherChannel на коммутаторах Cisco

Присоединение интерфейса в логический интерфейс Ether-Channel L2 (при L2 EtherChannel логический интерфейс (Port-Channel) создается автоматически):

– вход в глобальный режим конфигурации

configure terminal

вход в режим конфигурирования интерфейса порта

interface «interface-id»

– присоединение интерфейса к EtherChannel

channel-group channel-group-number mode {auto [nonsilent] | desirable [non-silent] | on} | {active | passive}

Здесь channel-group-number – номер от 1 до 6;

• для mode выберите один из ключей:

• auto – позволяет PAgP только тогда, когда устройство PAgP обнаружено. Помещает порт в состояние Passive

Negotiating, в котором порт отвечает на PAgP-пакеты, которые он получает, но сам не инициирует переговоры PAgP, т.е. не отправляет пакеты PAgP;

• desirable – безусловно позволяет PAgP. Помещает порт в состояние Active Negotiating State, в котором порт начинает переговоры с портом на другой стороне путем отправки PAgPпакетов;

• on – перманентно помещает порт в Port-Channel без переговоров PAgP или LACP. Данный режим работает, когда порты на обеих сторонах сконфигурированы в этом режиме;

• non-silent (Optional) – если ваш коммутатор подключен к партнеру, который PAgP-совместим, то сконфигурировать порт коммутатора для Non-Silent Operation, когда порт в режиме Auto или Desirable. Если вы не укажете Non-Silent, то Silent предполагается. Опция Silent для подсоединения к File Servers или Packet Analyzers. Эта опция позволяет PAgP работать, присоединять порт к Channel Group и использовать порт для передачи;

• active – позволяет LACP, только если устройство LACP обнаружено. Помещает порт в состояние Active Negotiating State, в котором порт начинает переговоры с портом на другой стороне путем отправки LACP-пакетов;

• passive – позволяет LACP на порту. Помещает порт в состояние Passive Negotiating State, в котором порт отвечает на запросы приходящих LACP-пакетов, но сам не инициирует переговоры LACP, т.е. не отправляет пакеты LACP.

Настройка транковых параметров интерфейса Port-channel: interface portchannel «interface-id»

Настройка балансировки нагрузки на логическом интерфейсе EtherChannel:

– вход в глобальный режим конфигурации configure terminal

- выбор критерия балансировки нагрузки

```
port-channel load-balance {dst-ip | dst-mac | src-
dst-ip | src-dst-mac | src-ip | src-mac}
```

– просмотр краткой информации о параметрах интерфейсов EtherChannel, настроенных на коммутаторе:

show etherchannel summary

 просмотр подробной информации о параметрах интерфейсов EtherChannel, настроенных на коммутаторе:

show interfaces etherchannel или show etherchannel detail

– просмотр метода балансировки нагрузки: show etherchannel load-balance

Настройка VTP на коммутаторах Cisco

Hacтройка VTP: - вход в глобальный режим конфигурации configure terminal - настройка режима работы VTP на коммутаторе VTP mode [server | client | transparent] - настройка домена VTP VTP domain «domain_name» - настройка пароля VTP VTP password «password» - настройка версии VTP VTP version «version» - просмотр параметров работы VTP на коммутаторе: show VTP status show VTP password

Настройка Subinterfaces на маршрутизаторах Cisco

Создание сабинтерфейса в определенном VLAN, на порту маршрутизатора, подключенном к порту коммутатора, настроенному в режиме транка:

```
вход в глобальный режим конфигурации
configure terminal
вход в режим конфигурирования интерфейса порта
interface «interface-id»
вход в глобальный режим конфигурации
configure terminal
```

– вход в режим конфигурирования сабинтерфейса interface «interface-id. subinterface-id» (рекомендуется, чтобы Subinterface-ID = VLAN-ID)
– настройка инкапсуляции 802.1Q для поддержки нужной VLAN encapsulation dot1Q «vlan-id»

настройка IP-адреса

ip address address netmask

После настройки всех сабинтерфейсов необходимо в режиме конфигурации основного интерфейса включить его командой No Shutdown.

 просмотр настройки и состояния интерфейсов на маршрутизаторе

show ip interface brief

- просмотр таблицы маршрутизации на маршрутизаторе show ip route

2.2. Лабораторная работа «VLAN, 802.1Q, EtherChannel L2, VTP»

Рис. 2.9. Топология сети

Коммутационное поле

Рис. 2.10. Соединения на патч-панели

Соберите топологию, указанную на рис. 2.9, соединив разъемы на патч-панели патчкордами типа Straight-Touch (рис. 2.10). Проведите начальную конфигурацию коммутаторов и маршрутизатора. Для доступа к коммутаторам используйте терминальный сервер:

- для доступа к sw2.lab запустите telnet 192.168.0.110 2004;

– для доступа к sw3.lab запустите telnet 192.168.0.110 2005;

- для доступа к sw4.lab запустите telnet 192.168.0.110 2006;

– для доступа к r4.lab запустите telnet 192.168.0.110 2010.

* Имя student, пароль student.

Если коммутаторы и маршрутизаторы не настраивались ранее, выполните начальную конфигурацию коммутаторов (имя устройства, логин (student) и пароль доступа (student) на терминальные и консольные линии доступа). Выполните данную последовательность команд для коммутатора из привилегированного режима EXEC Cisco IOS (меняя имя коммутатора естественно):

```
conf t
hostname sw1.lab
service password-encryption
username student privilege 15 secret 0 student
no ip domain-lookup
banner motd ^C
```

sw1.lab

PERM, Russia, Network technology lab. IT department. PSTU

Warning: Authorized access only!!! Disconnect IMMEDIATELY if you are not an authorized person!!!

Contact information: web http://wrls.ru email support@wrls.ru tel +7(342)220-63-85

^C

```
line con 0
login local
line vty 0 4
login local
line vty 5 15
login local
```

Для маршрутизатора из привилегированного режима EXEC Cisco IOS (меняя имя маршрутизатора естественно):

```
conf t
hostname r1.lab
service password-encryption
no ip domain-lookup
username student privilege 15 secret 0 student
banner motd ^C
```

r1.lab

```
PERM, Russia,
Network technology lab. IT department. PSTU
```

```
Warning: Authorized access only!!!
Disconnect IMMEDIATELY if you are not an authorized
person!!!
```

```
Contact information:
web http://wrls.ru
email support@wrls.ru
tel +7(342)220-63-85
```

^C

```
line con 0
login local
line aux 0
line vty 0 4
login local
line vty 5 15
login local
```

Настройте тип media rj45 на гигабитных комбинированных портах и транки на коммутаторах с Native VLAN 99 согласно топологии:

```
Sw2 ·
sw2.lab#configure terminal
sw2.lab(config)#interface GigabitEthernet0/1
sw2.lab(config-if)#switchport trunk native vlan 99
sw2.lab(config-if)#switchport mode trunk
sw2.lab(config-if)#media-type rj45
sw2.lab(config-if)#interface GigabitEthernet0/2
sw2.lab(config-if)#switchport trunk native vlan 99
sw2.lab(config-if)#switchport mode trunk
sw2.lab(config-if)#media-type rj45
Sw3:
sw3.lab#configure terminal
sw3.lab(config)#interface FastEthernet0/3
sw3.lab(config-if)#switchport trunk native vlan 99
sw3.lab(config-if)#switchport mode trunk
sw3.lab(config-if)#interface FastEthernet0/4
sw3.lab(config-if)#switchport trunk native vlan 99
sw3.lab(config-if) #switchport mode trunk
sw3.lab(config)#interface GigabitEthernet0/1
sw3.lab(config-if)#switchport trunk native vlan 99
sw3.lab(config-if) #switchport mode trunk
sw3.lab(config-if)#media-type rj45
sw3.lab(config-if)#interface GigabitEthernet0/2
sw3.lab(config-if)#switchport trunk native vlan 99
sw3.lab(config-if)#switchport mode trunk
sw3.lab(config-if)#media-type rj45
Sw4:
sw4.lab#configure terminal
sw4.lab(config)#interface FastEthernet0/3
sw4.lab(config-if)#switchport trunk native vlan 99
sw4.lab(config-if)#switchport mode trunk
sw4.lab(config-if)#interface FastEthernet0/4
sw4.lab(config-if)#switchport trunk native vlan 99
```

```
sw4.lab(config-if)#switchport mode trunk
```

Объедините созданные транки в EtherChannel:

```
Sw2:
sw2.lab#configure terminal
sw2.lab(config)#interface GigabitEthernet0/1
sw2.lab(config-if)#channel-group 1 mode on
sw2.lab(config-if)#interface GigabitEthernet0/2
sw2.lab(config-if)#channel-group 1 mode on
Sw3.
sw3.lab#configure terminal
sw3.lab(config)#interface GigabitEthernet0/1
sw3.lab(config-if)#channel-group 1 mode on
sw3.lab(config-if)#interface GigabitEthernet0/2
sw3.lab(config-if)#channel-group 1 mode on
sw3.lab(config)#interface FastEthernet0/3
sw3.lab(config-if)#channel-group 2 mode on
sw3.lab(config-if)#interface FastEthernet0/4
sw3.lab(config-if)#channel-group 2 mode on
Sw4:
sw4.lab#configure terminal
sw4.lab(config)#interface FastEthernet0/3
sw4.lab(config-if)#channel-group 1 mode on
sw4.lab(config-if)#interface FastEthernet0/4
sw4.lab(config-if)#channel-group 1 mode on
```

Скорректируйте Native VLAN на созданных интерфейсах EtherChannel:

```
Sw2:
sw2.lab#configure terminal
sw2.lab(config)#interface Port-channel1
sw2.lab(config-if)# switchport trunk native vlan 99
Sw3:
sw3.lab#configure terminal
sw3.lab(config)#interface Port-channel1
sw3.lab(config-if)#switchport trunk native vlan 99
sw3.lab(config-if)#interface Port-channel2
sw3.lab(config-if)#switchport trunk native vlan 99
Sw4:
sw4.lab#configure terminal
```

```
sw4.lab(config)#interface Port-channel1
sw4.lab(config-if)#switchport trunk native vlan 99
```

Настройте метод балансировки нагрузки по MAC-адресу Destination на логических интерфейсах EtherChannel:

```
Sw2:
sw2.lab#configure terminal
sw2.lab(config)#port-channel load-balance dst-mac
Sw3:
sw3.lab#configure terminal
sw3.lab(config)#port-channel load-balance dst-mac
Sw4:
sw4.lab#configure terminal
sw4.lab(config)#port-channel load-balance dst-mac
```

Настройте VTP-server на Sw3, VTP-client на Sw2 и Sw4. Версия VTP – 2, домен – itas, пароль – mypass. Добавьте VLAN's 100 и 200 на Sw3:

```
Sw2:
sw2.lab(config)#vtp mode client
sw2.lab(config)#vtp version 2
sw2.lab(config)#vtp domain itas
sw2.lab(config)#vtp password mypass
Sw3:
sw3.lab(config)#vtp mode server
sw3.lab(config) #vtp version 2
sw3.lab(config) #vtp domain itas
sw3.lab(config) #vtp password mypass
sw3.lab(config)#vlan 100
sw3.lab(config-vlan) #name vl100
sw3.lab(config-vlan)#vlan 200
Switch(config-vlan) #name vl200
Sw4:
sw4.lab (config)#vtp mode client
sw4.lab (config) #vtp version 2
sw4.lab (config)#vtp domain itas
sw2.lab (config) #vtp password mypass
```

В случае если транки и EtherChannel настроены правильно, вывод команд Show Interfaces Trunk, Show EtherChannel Summary, Show EtherChannel Detail будет следующим:

```
Sw2:
   sw2.lab#show interfaces trunk
   Port Mode Encapsulation Status Native vlan
   Pol on 802.1q trunking 99
   *На интерфейсе Port-Channel 1 настроен транк 802.1g
c Native VLAN 99.
   Port Vlans allowed on trunk
   Po1 1-4094
   Port Vlans allowed and active in management domain
   Po1 1-3, 10, 17, 20, 100, 200
   Port Vlans in spanning tree forwarding state and
not pruned
   Po1 1-3, 10, 17, 20, 100, 200
   *Список VLAN, трафику которых разрешено идти по ин-
терфейсу Port-Channell.
   sw2.lab#show etherchannel summary
   Flags: D - down P - in port-channel
   I - stand-alone s - suspended
   H - Hot-standby (LACP only)
   R - Layer3 S - Layer2
   U - in use f - failed to allocate aggregator
   u - unsuitable for bundling
   w - waiting to be aggregated
   d - default port
   Number of channel-groups in use: 1
   Number of aggregators: 1
   Group Port-channel Protocol Ports
   1 Pol(SU) - Gi0/1(P) Gi0/2(P)
   * Интерфейс Port-Channell - работает на L2, состоит
из портов Gi0/1 и Gi0/2, оба из которых работают.
```

```
sw2.lab#show etherchannel detail
Channel-group listing:
------
Group: 1
_ _ _ _ _ _ _ _ _ _ _
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol: -
Ports in the group:
_____
Port: Gi0/1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On/FEC Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0x00 Protocol = -
*Режим работы EtherChannel - on.
Age of the port in the current state: 00d:00h:57m:21s
Port: Gi0/2
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On/FEC Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0 \times 00 Protocol = -
Age of the port in the current state: 00d:00h:57m:34s
Port-channels in the group:
Port-channel: Po1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Age of the Port-channel = 00d:00h:57m:34s
Logical slot/port = 2/1 Number of ports = 2
GC = 0x00000000 HotStandBy port = null
```

```
Port state = Port-channel Ag-Inuse
    Protocol = -
    Ports in the Port-channel:
    Index Load Port EC state No of bits
    0 00 Gi0/1 On/FEC 0
    0 00 Gi0/2 On/FEC 0
    Sw3:
    sw3.lab#show interfaces trunk
     Port Mode Encapsulation Status Native vlan
      Po1
             on
                      802.1q
                                trunking
                                            <mark>99</mark>
      Po2
             on
                      802.1q trunking
                                            <mark>99</mark>
    Port Vlans allowed on trunk
    Po1 1-4094
    Po2 1-4094
    Port Vlans allowed and active in management domain
    Po1 1-3,10,17,20,100,200
    Po2 1-3,10,17,20,100,200
   Port Vlans in spanning tree forwarding state and
not pruned
    Po1 1-3,10,17,20,100,200
    Po2 1-3,10,17,20,100,200
    sw3.lab#show etherchannel summary
    Flags: D - down P - bundled in port-channel
    I - stand-alone s - suspended
   H - Hot-standby (LACP only)
   R - Layer3 S - Layer2
   U - in use f - failed to allocate aggregator
   M - not in use, minimum links not met
   u - unsuitable for bundling
   w - waiting to be aggregated
   d - default port
```

```
Number of channel-groups in use: 2
Number of aggregators: 2
Group Port-channel Protocol Ports
1 Po1(SU) - Gi0/1(P) Gi0/2(P)
2 Po2(SU) -Fa0/3(P) Fa0/4(P)
sw3.lab#show etherchannel detail
Channel-group listing:
_____
Group: 1
-----
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol: -
Minimum Links: 0
Ports in the group:
-----
Port: Gi0/1
-----
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0x00 Protocol = -
Age of the port in the current state: 0d:01h:00m:53s
Port: Gi0/2
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0 \times 00 Protocol = -
Age of the port in the current state: 0d:01h:01m:00s
Port-channels in the group:
-----
```

```
Port-channel: Po1
Age of the Port-channel = 0d:01h:01m:00s
Logical slot/port = 2/1 Number of ports = 2
GC = 0x00000000 HotStandBy port = null
Port state = Port-channel Aq-Inuse
Protocol = -
Port security = Disabled
Ports in the Port-channel:
   Index
                       Port
                               <mark>EC state</mark> No of bits
              Load
     0
               00
                        Gi0/1
                                    On
                                               0
     0
                                               0
               00
                        Gi0/2
                                    On
Time since last port bundled: 0d:01h:00m:54s Gi0/1
Group: 2
_____
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol· -
Minimum Links: 0
Ports in the group:
_____
Port: Fa0/3
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Port state = Up Mstr In-Bndl
Channel group = 2 Mode = On Gcchange = -
Port-channel = Po2 GC = - Pseudo port-channel = Po2
Port index = 0 Load = 0 \times 00 Protocol = -
Age of the port in the current state: 0d:00h:55m:25s
Port: Fa0/4
-----
Port state = Up Mstr In-Bndl
Channel group = 2 Mode = On Gcchange = -
Port-channel = Po2 GC = - Pseudo port-channel = Po2
```

```
Port index = 0 Load = 0 \times 00 Protocol = -
    Age of the port in the current state: 0d:00h:55m:17s
    Port-channels in the group:
    Port-channel: Po2
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    Age of the Port-channel = 0d:00h:55m:27s
    Logical slot/port = 2/2 Number of ports = 2
    GC = 0x00000000 HotStandBy port = null
    Port state = Port-channel Aq-Inuse
    Protocol = -
    Port security = Disabled
    Ports in the Port-channel:
       Index
                  Load
                            Port
                                    EC state No of bits
         0
                   00
                            Fa0/3
                                        On
                                                   0
         0
                   00
                            Fa0/4
                                        On
                                                   0
    Sw4:
    sw4.lab#show interfaces trunk
    Port Mode Encapsulation Status Native vlan
    Pol on 802.1g trunking 99
    Port Vlans allowed on trunk
    Po1 1-4094
    Port Vlans allowed and active in management domain
    Pol 1-3,10,17,20,100,200
    Port Vlans in spanning tree forwarding state and not
pruned
    Po1 1-3,10,17,20,100,200
    sw4.lab#show etherchannel summary
    Flags: D - down P - bundled in port-channel
    I - stand-alone s - suspended
    H - Hot-standby (LACP only)
```

```
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
Number of channel-groups in use: 1
Number of aggregators: 1
    Group Port-channel Protocol Ports
     1
                  \frac{Po1(SU)}{Fa0/3(P)} = \frac{Fa0/4(P)}{Fa0/4(P)}
sw4.lab#show etherchannel detail
Channel-group listing:
Group: 1
_____
Group state = L2
Ports: 2 Maxports = 8
Port-channels: 1 Max Port-channels = 1
Protocol: -
Minimum Links: 0
Ports in the group:
_____
Port: Fa0/3
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On Gcchange = -
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0x00 Protocol = -
Age of the port in the current state: 0d:00h:45m:49s
Port: Fa0/4
-----
Port state = Up Mstr In-Bndl
Channel group = 1 Mode = On Gcchange = -
```

```
Port-channel = Po1 GC = - Pseudo port-channel = Po1
Port index = 0 Load = 0 \times 00 Protocol = -
Age of the port in the current state: 0d:01h:00m:11s
Port-channels in the group:
_____
Port-channel: Po1
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Age of the Port-channel = 0d:01h:00m:11s
Logical slot/port = 2/1 Number of ports = 2
GC = 0x00000000 HotStandBy port = null
Port state = Port-channel Ag-Inuse
Protocol = -
Port security = Disabled
Ports in the Port-channel:
   Index
             Load
                       Port
                               EC state No of bits
     0
             00
                       Fa0/3
                                   On
                                              0
     0
              00
                       Fa0/4
                                   On
                                               0
```

В случае если VTP настроен правильно, вывод команд Show VTP Status, Show VTP Password будет следующим:

```
Sw2:
sw2.lab#show vtp status
VTP Version : 2
Configuration Revision : 3
Maximum VLANs supported locally : 255
Number of existing VLANs: 12
VTP Operating Mode: Client
VTP Domain Name: itas
VTP Pruning Mode: Disabled
VTP V2 Mode: Enabled
VTP Traps Generation: Disabled
MD5 digest: 0xD9 0x1A 0x61 0x48 0x07 0x0B 0xC5 0x02
Configuration last modified by 0.0.0.0 at 7-7-93
06:25:16
```

```
*Домен VTP - itas, версия - 2, ревизия конфигура-
ции - 3, режим работы - клиент.
    sw2.lab#show vtp password
   VTP Password: mypass
    *Пароль VTP.
   Sw3:
    sw3.lab#show vtp status
   VTP Version: running VTP2
   Configuration Revision: 3
   Maximum VLANs supported locally: 255
   Number of existing VLANs: 12
   VTP Operating Mode: Server
   VTP Domain Name: itas
   VTP Pruning Mode: Disabled
   VTP V2 Mode: Enabled
   VTP Traps Generation: Disabled
   MD5 digest: 0xD9 0x1A 0x61 0x48 0x07 0x0B 0xC5 0x02
   Configuration last modified by 0.0.0.0 at 7-7-93
06:25:16
   Local updater ID is 0.0.0.0 (no valid interface
found)
    sw3.lab#show vtp password
   VTP Password: mypass
    Sw4:
    sw4.lab#show vtp status
   VTP Version: running VTP2
   Configuration Revision: 3
   Maximum VLANs supported locally: 255
   Number of existing VLANs: 12
   VTP Operating Mode: Client
   VTP Domain Name: itas
   VTP Pruning Mode: Disabled
   VTP V2 Mode: Enabled
   VTP Traps Generation: Disabled
   MD5 digest: 0xD9 0x1A 0x61 0x48 0x07 0x0B 0xC5 0x02
    Configuration last modified by 0.0.0.0 at 7-7-93
06:25:16
```

```
sw4.lab#show vtp password
VTP Password: mypass
```

Настройте порты Fa0/1 и Fa0/2 на коммутаторах Sw2 и Sw4 для работы с VLAN:

```
Sw2:
sw2.lab#configure terminal
sw2.lab(config)#interface FastEthernet0/1
sw2.lab(config-if)#switchport access vlan 100
sw2.lab(config-if)#switchport mode access
sw2.lab(config-if)#interface FastEthernet0/2
sw2.lab(config-if)#switchport access vlan 200
sw2.lab(config-if)#switchport mode access
Sw4:
sw4.lab#configure terminal
sw4.lab(config)#interface FastEthernet0/1
sw4.lab(config-if)#switchport access vlan 100
sw4.lab(config-if)#switchport mode access
sw4.lab(config-if)#interface FastEthernet0/2
sw4.lab(config-if)#switchport access vlan 200
sw4.lab(config-if)#switchport mode access
```

В случае если порты Fa0/1 и Fa0/2 на коммутаторах Sw2 и Sw4 настроены правильно, вывод команды Show VLAN будет следующим:

```
Sw2:
sw2.lab#show vlan
 VLAN
        Name
               Status
                                   Ports
  1
     default active Fa0/3, Fa0/4, Fa0/5, Fa0/6
                      Fa0/7, Fa0/8, Fa0/9, Fa0/10
                      Fa0/11, Fa0/12, Fa0/13, Fa0/14
                      Fa0/15, Fa0/16, Fa0/17, Fa0/18
                      Fa0/19, Fa0/20, Fa0/21, Fa0/22
                      Fa0/23, Fa0/24
  2
       VLAN 1 active
  3
       VLAN 2 active
       vlan10 active
  10
  17
      test17 active
  20
      test20 active
```

100 vl100 active Fa0/1 200 vl200 active Fa0/2 *Порт Fa0/1 помещен в VLAN vl100, порт Fa0/2 в vl200. 1002 fddi-default act/unsup 1003 trcrf-default act/unsup 1004 fddinet-default act/unsup 1005 trbrf-default act/unsup

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2

VLAN Type SAID MTU Pa- RingNo BridgeNo Stp BrdgMode Trans1 Trans2

				Tenc						
1	enet	1	1500	-	-	-	-	-	0	0
2	enet	100002	1500	-	-	-	-	-	0	0
3	enet	100003	1500	-	-	-	-	-	0	0
10	enet	100010	1500	-	-	-	-	-	0	0
17	enet	100017	1500	-	-	-	-	-	0	0
20	enet	100020	1500	-	-	-	-	-	0	0
100	enet	100100	1500	-	-	-	-	-	0	0
200	enet	100200	1500	-	-	-	-	-	0	0
1002	fddi	101002	1500	-	-	-	-	-	0	0
1003	trcrf	101003	4472	1005	3276	-	-	srb	0	0
1004	fdnet	101004	1500	-	-	-	ieee	-	0	0
1005	trbrf	101005	4472	-	-	15	ibm	-	0	0

VLAN	AREHops	STEHops	Backup CRF
1003	7	7	off

Remote SPAN VLANs

----- ---- -----

Primary Secondary Type Ports

Sw4: sw4.lab#show vlan

VLAN Name Status Ports 1 default active Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16

Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2 2 VLAN 1 active 3 VLAN 2 active 10 vlan10 active 17 test17 active 20 test20 active 100 vl100 active Fa0/1 vl200 active Fa0/2 200 1002 fddi default act/unsup 1003 trcrf default act/unsup 1004 fddinet default act/unsup 1005 trbrf default act/unsup

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2

VLAN	Туре	SAID	MTU	Pa-	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans2
				rent						
1	enet	1	1500	-	-	-	-	-	0	0
2	enet	100002	1500	-	-	-	-	-	0	0
3	enet	100003	1500	-	-	-	-	-	0	0
10	enet	100010	1500	-	-	-	-	-	0	0
17	enet	100017	1500	-	-	-	-	-	0	0
20	enet	100020	1500	-	-	-	-	-	0	0
100	enet	100100	1500	-	-	-	-	-	0	0
200	enet	100200	1500	-	-	-	-	-	0	0
1002	fddi	101002	1500	-	-	-	-	-	0	0
1003	trcrf	101003	4472	1005	3276	-	-	srb	0	0
1004	fdnet	101004	1500	-	-	-	ieee	_	0	0
1005	trbrf	101005	4472	-	-	15	ibm	-	0	0

VLAN	<i>AREHops</i>	STEHops	Backup CRF
1003	7	7	off

Remote SPAN VLANs

Primary Secondary Type Ports

----- ------

Протестируйте работу VLAN-сетей

Компьютер РС1 с адресом 192.168.100.2:

– послать эхо-запросы ping к узлу PC3 с адресом 192.168.100.3 – pаботает (пинги пойдут не сразу, так как нужно время, чтобы заполнить таблицы MAC-адресов на всех коммутаторах);

– послать эхо-запросы ping к узлам PC4 и PC5 с адресами 192.168.200.2 и 192.168.200.3 – не работает.

Маршрутизация между VLAN. Существует два подхода к маршрутизации пакетов между VLAN. Первый – выделить на коммутаторе и роутере отдельный порт под каждую VLAN, но данный подход очень расточителен. Второй – создать между коммутатором и маршрутизатором транк, и на маршрутизаторе сделать виртуальные интерфейсы.

Настроим на коммутаторе Sw3 порт Fa0/2 в режим транка:

```
sw3.lab#configure terminal
sw3.lab#interface fastethernet0/2
sw3.lab#switchport mode trunk
```

Настроим на маршрутизаторе сабинтерфейсы на порту Fa0/1 согласно топологии:

```
r4.lab#configure terminal
r4.lab(config)#interface fa0/1.100
r4.lab(config-subif)#encapsulation dotlQ 100
r4.lab(config-subif)#ip address 192.168.100.1
255.255.255.0
r4.lab(config-subif)#interface fa0/1.200
r4.lab(config-subif)#encapsulation dotlQ 200
r4.lab(config-subif)#ip address 192.168.200.1
255.255.255.0
r4.lab(config-subif)#interface fa0/1
r4.lab(config-subif)#interface fa0/1
r4.lab(config-subif)#interface fa0/1
r4.lab(config-subif)#no shutdown
```

Не забудьте прописать шлюзы по умолчанию на всех РС!

В случае если порты на маршрутизаторе настроены правильно, вывод команд Show IP Int Brief и Show IP Route будет следующим: r4.lab#show ip int brief

IP-Address OK? Method Status Protocol Interface FastEthernet0/0 unassigned YES NVRAM down down FastEthernet0/1 unassigned YES unset down down FastEthernet0/1.100 192.168.100.1 YES manual up up FastEthernet0/1.200 192.168.200.1 YES manual up up Serial0/1/0 unassigned YES manual down down Serial0/1/1 unassigned YES unset down down administratively YES unset down Serial0/1/2 unassigned down administratively YES unset Serial0/1/3 unassigned down down administratively r4.lab#show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set C 192.168.200.0/24 is directly connected, FastEthernet0/1.200 192.168.100.0/24 is directly connected, C

FastEthernet0/1.100

Протестируйте работу маршрутизации между VLAN-сетями

Компьютер РС1 с адресом 192.168.100.2:

– послать эхо-запросы ping к узлу РСЗ с адресом 192.168.100.3 – работает;

– послать эхо-запросы ping к узлам PC4 и PC5 с адресами 192.168.200.2 и 192.168.200.3 – работает (пинги пойдут не сразу, так как нужно время, чтобы заполнить таблицы MAC-адресов на всех коммутаторах и ARP-таблицу на маршрутизаторе).

Задания для самостоятельной работы

1. Скорректируйте настройки оборудования так, чтобы PC1 и PC3 были в VLAN 300. Проверьте работу VLAN и маршрутизации между VLAN.

2. Соберите топологию и настройте оборудование так, чтобы EtherChannel между Sw2 и Sw3 состоял не из Ge0/1 и Ge0/2, а из Fa0/6 и Fa0/7.

3. Запустите команду Show Spanning-Tree VLAN 100 Detail на Sw3. Как STP видит EtherChannel?

Вопросы для самопроверки

- 1. Что такое VLAN?
- 2. Зачем нужен VLAN?
- 3. Что такое транк?
- 4. Зачем нужен тег?
- 5. Какой размер имеет тег и какие поля он включает?
- 6. Что такое агрегирование каналов?
- 7. Что дает агрегирование каналов?
- 8. Каким образом можно объединить несколько VLAN?
- 9. Назовите основные способы образования VLAN?
- 10. Зачем нужен протокол VTP?
- 11. Назовите режимы коммутаторов в VTP.
- 12. Из каких полей состоит кадр VTP?
- 13. Как передаются VTP-кадры?

Список литературы по главе 2

1. Программа сетевой академии Cisco CCNA 1 и 2. Вспомогательное руководство: пер. с англ. – М.: Вильямс, 2008. – 1168 с.

2. Принципы коммутации в локальных сетях Cisco: пер. с англ. – М.: Вильямс, 2003. – 976 с.

3. Принципы маршрутизации в Internet: пер. с англ. – 2-е изд. – М.: Вильямс, 2001. – 448 с.

4. Configuring EtherChannels [Электронный ресурс] / Cisco. – CIIIA, 2011. – URL: http://www.cisco.com/en/US/docs/switches/lan/ca-talyst3550/software/release/12.1_13_ea1/configuration/guide/swethchl. html.

Cisco IOS 12.2 (44) SE Command Reference [Электронный реcypc] / Cisco. – CIIIA, 2011. – URL: http://www.cisco.com/en/ US/docs/switches/lan/catalyst2960/software/release/12.2_44_se/command/ reference/cli3.html. Учебное издание

МАСИЧ Григорий Федорович

СЕТИ ПЕРЕДАЧИ ДАННЫХ

Учебное пособие

Редактор и корректор В.В. Мальцева

Подписано в печать 5.03.2014. Формат 60×90/16. Усл. печ. л. 12,0. Тираж 100 экз. Заказ № 32/2014.

Издательство Пермского национального исследовательского политехнического университета. Адрес: 614990, г. Пермь, Комсомольский пр., 29, к. 113. Тел. (342) 219-80-33.